
In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing
Supplementary Material

In this supplementary material, we present additional visual results and implementation details to complement the main
paper.

1. Overview
We include the following contents as our supplementary material:
• The implementation details of our proposed approach. Our code and models will be publicly available upon publication.
• Additional results, organized in our project page - https://in-n-out-3d.github.io/.

2. Implementation details
This section discusses further details not included in the main paper due to the page limit.

2.1. In-distribution inversion

We further present the details in Section 4.1 in the main paper.
Latent code initialization. Instead of initializing the latent codes [w1, · · · , wN ], wt ∈ R14×512 using an average latent
code, we propose to use the nearest neighbor (NN) approach for the initialization. We show our approach in Algorithm 1.
Please recall that we use N = 1 for single image.

Algorithm 1: NN init(): Nearest Neighbor (NN) Initialization for latent codes
Input : Image It, or Video V = [I1, · · · , IN ], pre-trained generator G, camera parameters [p1, · · · , pN ],

perceptual loss LPIPS(), the number of samples n.
Output: Initialized latent codes [w1, · · · , wN ].

1 for t← 1 to N do
2 wsamples = []
3 Distances dists = []
4 for i← 1 to n do
5 Draw zi ∈ R512 ∼ N (0, I).
6 Compute wi ← G.mapping(zi, pt)
7 wsamples.insert(wi)
8 dists.insert(LPIPS(G(wi, pt), It))
9 end

10 wt ← NearestNeighbor(wsamples, dists)

11 end
12 Return mean([w1, · · · , wN ]).

Optimization. We use a residual form to represent the latent code of each frame.

wt = wcano + awres
t , (1)

where wcano is the canonical latent code, and wres
t is the residual. In practice, we use a = 0.7.

To initialize the latent codes, we randomly sample n = 500 latent codes.
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2.2. Out-of-domain inversion

We further explain the details in Section 4.2 in the main paper.
Tri-plane. We use the Tri-plane representation from EG3D [2]. For the out-of-distribution (OOD) object, we use tri-plane
TO ∈ R256×256×32×3 as its 3D representation. TO is initialized from a standard normal distribution. Given a 3D position
x ∈ R3, we project it onto each of the plane and retrieve the corresponding feature vectors Fxy, Fyz, Fxz through a bilinear
interpolation. Then three feature vectors are aggregated via summation.
Per-frame latent code ϕt. To encode the OOD object across different frames, we use a time-varying latent code ϕt ∈ R32

for each frame. We draw ϕt ∼ N (0, I). ϕt is optimized together with other variables in Section 4.2.
Decoder. For the out-of-distribution inversion, we use a two-layer Multi-Layer Perceptron (MLP) as the decoder to predict
the pointwise color c ∈ R3, density σ ∈ R, and blending weight b ∈ R for the later composite rendering.

(cO, σO, b) = DO(TO(tk), ϕt; θDO ) . (2)

Optimization. During the optimization, we use the loss function Eqn. 8 in the main paper.

2.3. Overall optimization

In practice, we only optimize with the total loss function (Eqn. 8 in main paper, also shown below) for both in-distribution and
out-of-distribution optimization. Our method can automatically split in-distribution and out-of-distribution radiance fields.

LLR =

N∑
t=1

LC
t + λ∆L∆ + λwLw + (λDLD) , (3)

2.4. Editing directions

In our paper, we apply InterfaceGAN [5] and StyleCLIP [3] to EG3D.
InterfaceGAN. InterfaceGAN requires a pre-trained classifier to label synthetic image data generated from the generator.
We use CLIP [4] instead to label data. For each image, we use the text prompt “A portrait of a X face.”, where “X” is the
attribute, e.g., smiling, old-man, and then compute the CLIP score. The CLIP scores act as the labels and we then apply
InterfaceGAN to labelled image-score pairs for training. For each editing direction, we generate 500,000 image-score pairs
for training.
StyleCLIP. We apply StyleCLIP mapper [3] to synthetic images generated from pretrained EG3D generator. For each editing
direction, we use 50,000 synthetic images for training, and 10,000 images for validation.
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Figure 1. Visualization of learned mask and feature maps. We visualize the learned mask and different tri-plane feature maps. The
learned mask indicates the possibility of each pixel as an OOD object.

3. Additional results
3.1. Single Image Reconstruction, editing and view synthesis

Please refer to our project page for more results.

https://in-n-out-3d.github.io/


3.2. Video Reconstruction, editing and view synthesis

We show more results in our project page. Please refer to project page.

3.3. Non-face data

Our method also applies to non-face data. Here we show an example of cat. We use the same pipeline but with a cat EG3D
generator. The editing direction is “black cat” from GOAE [6].
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3.4. OOD object removal

By setting the blending weights of the OOD objects to 0, we can remove OOD objects. Please refer to project page for more
visual results.

3.5. Limitations/Failure cases

We visualize two limitations in our project page.
Floaters. Our method introduces a new tri-plane, for single image inversion, its view synthesis result may involve some
“floaters”, since single-image 3D reconstruction is an ill-posed problem. Possible solution includes using distortion loss [1].
However, except for the novel views, our method outperforms other methods in terms of reconstruction quality and achieves
faithful editing.

3.6. Visualization of learned masks and triplane features

We show an example in Figure 1. Please be aware of a bug in the official EG3D tri-plane implementation, where the tri-planes
are actually XY, XZ, and ZX. Here we only visualize XY and XZ planes.

https://in-n-out-3d.github.io/
https://in-n-out-3d.github.io/
https://in-n-out-3d.github.io/
https://github.com/NVlabs/eg3d/issues/67
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